PENGERTIAN REGRESI LINEAR SEDERHANA. adalah Metode Statistik yang berfungsi untuk menguji sejauh mana hubungan sebab akibat antara Variabel Faktor Penyebab (X) terhadap Variabel Akibatnya. Faktor Penyebab pada umumnya dilambangkan dengan X atau disebut juga dengan Predictor sedangkan Variabel Akibat dilambangkan dengan Y atau disebut juga dengan Response. Regresi Linear Sederhana atau sering disingkat dengan SLR (Simple Linear Regression) juga merupakan salah satu Metode Statistik yang dipergunakan dalam produksi untuk melakukan peramalan ataupun prediksi tentang karakteristik kualitas maupun Kuantitas.
ANALISIS REGRESI LINEAR SEDERHANA
Analisis regresi linier sederhana adalah hubungan secara linear antara satu variabel independen (X) dengan variabel dependen (Y). Analisis ini untuk mengetahui arah hubungan antara variabel independen dengan variabel dependen apakah positif atau negatif dan untuk memprediksi nilai dari variabel dependen apabila nilai variabel independen mengalami kenaikan atau penurunan.. Data yang digunakan biasanya berskala interval atau rasio.
Rumus regresi linear sederhana sebagi berikut:
Contoh kasus:
Seorang mahasiswa bernama Hermawan ingin meneliti tentang pengaruh biaya promosi terhadap volume penjualan pada perusahaan jual beli motor. Dengan ini di dapat variabel dependen (Y) adalah volume penjualan dan variabel independen (X) adalah biaya promosi. Dengan ini Hermawan menganalisis dengan bantuan program SPSS dengan alat analisis regresi linear sederhana. Data-data yang di dapat ditabulasikan sebagai berikut:
sumber :
Rahardja Prathama SE.1995.Pelajaran Ekonomi Kls.III. Jakrta. Pt Intan Pariwara.
Syafril Drs.Dkk. 1999. IPS Ekonomi. Jakarta. Bumi Aksara.
Contoh Penggunaan Analisis Regresi Linear Sederhana dalam Produksi antara lain :
Hubungan antara Lamanya Kerusakan Mesin dengan Kualitas Produk yang dihasilkan
Hubungan Jumlah Pekerja dengan Output yang diproduksi
Hubungan antara suhu ruangan dengan Cacat Produksi yang dihasilkan.
Model Persamaan Regresi Linear Sederhana adalah seperti berikut ini :
Y = a + bX
Dimana :
Y = Variabel Response atau Variabel Akibat (Dependent)
X = Variabel Predictor atau Variabel Faktor Penyebab (Independent)
a = konstanta
b = koefisien regresi (kemiringan); besaran Response yang ditimbulkan oleh Predictor.
Y = Variabel Response atau Variabel Akibat (Dependent)
X = Variabel Predictor atau Variabel Faktor Penyebab (Independent)
a = konstanta
b = koefisien regresi (kemiringan); besaran Response yang ditimbulkan oleh Predictor.
Nilai-nilai a dan b dapat dihitung dengan menggunakan Rumus dibawah ini :
a = (Σy) (Σx²) - (Σx) (Σxy)
n(Σx²) – (Σx)²
n(Σx²) – (Σx)²
b = n(Σxy) – (Σx) (Σy)
n(Σx²) – (Σx)²
n(Σx²) – (Σx)²
Berikut ini adalah Langkah-langkah dalam melakukan Analisis Regresi Linear Sederhana :
Tentukan Tujuan dari melakukan Analisis Regresi Linear Sederhana
Identifikasikan Variabel Faktor Penyebab (Predictor) dan Variabel Akibat (Response)
Lakukan Pengumpulan Data
Hitung X², Y², XY dan total dari masing-masingnya
Hitung a dan b berdasarkan rumus diatas.
Buatkan Model Persamaan Regresi Linear Sederhana.
Lakukan Prediksi atau Peramalan terhadap Variabel Faktor Penyebab atau Variabel Akibat.
Contoh Kasus Analisis Regresi Linear Sederhana :
1.Diketahui suatu penelitian terhadap hubungan antara nilai biaya periklanan dengan tingkat penjualan dari sebuah koperasi adalah sebagai berikut : (dalam ribuan rupiah)
Biaya periklanan
|
Tingkat Penjualan
|
50
|
40
|
51
|
46
|
52
|
44
|
53
|
55
|
54
|
49
|
a. Tentukan persamaan regresinya
b. Berapa besarnya koefisien korelasi dan koefisien determinasinya ?
c. Berapa besarnya kesalahan standar estimasinya ?
d. Dengan tingkat signifikasi 10%, ujilah hipotesis yang menyatakan bahwa hubungan antara biaya periklanan dan tingkat penjualan sedikitnya 40%!
Jawab :
a. Menentukan persamaan regresinya
Langkah 1 :
Menentukan variable X dan variable Y. Dalam soal ini variable biaya periklanan merupakan variable X dan tingkat penjualan merupakan variable Y.
Langkah 2 :
Membuat table regresi sederhana
Periklanan (X)
|
Tkt. Penjualan (Y)
|
(X)2
|
(Y)2
| |
50
|
40
|
2500
|
1600
| |
51
|
46
|
2601
|
2116
| |
52
|
44
|
2704
|
1936
| |
53
|
55
|
2809
|
3025
| |
54
|
49
|
2916
|
2401
| |
260
|
234
|
13530
|
11078
|
(XY)
|
2000
|
2346
|
2288
|
2915
|
2646
|
12195
|
Langkah 3 :
Menentukan koefisien a dan koefisien b
b = n ∑XY – ∑X.∑Y n ∑X2 – (∑X2)
= 5 (12195) –(260)(234)
5 (13530) – (260)2
= 2,7
a = ∑Y – b ∑X
n
= {(234) – 2,7 (260)} / 5
= {(234) – 2,7 (260)} / 5
= -93,6
Langkah 4:
Menentukan persamaan regresi linier sederhana
Y = a + b (X)
Maka persamaan regresi dalam soal ini adalah :
Y = -93,6 + 2,7 (X)
b. Menentukan besarnya koefisien korelasi dan koefisien determinasi
Koefisien korelasi :
r = n (∑XY) – (∑X) (∑Y)
[ n (∑X2) – (∑X2)]1/2 [ n (∑Y2) – (∑Y)2]1/2
= 5(12195) – (260) (234)
[ 5 (13530) – (260)2] 1/2 [ 5 (11078) – (234)2]1/2
= 0,76
c. Menentukan besarnya kesalahan standar estimasi
Se = ∑Y2– a ∑Y – b ∑XY)
n-2
= √( 11078 - (-93,6) (234) – (2,7) (1915))
5 -2
= 4,24
d. Pengujian Hipotesis
1. Tentukan Ho dan Ha
Ho : β ≥ 0,4
Ha : β <>
2. Uji hipoteis 1 arah
3. Tingkat signifikan
alpha = 0,1
4. Wilayah kritis t ()
db = n – 2
= 5-2
= 3
t (0,1 ; 3) = 1,638
5. Nilai hitung
Sb = Se / √ ((∑X2) – ((∑X)2 / n)
= 4,24 / √(13530 – (260)2 / 5) = 1,342
t hitung = b – β / Sb
= 2,7 - 0,4 / 1,342 = 1,714
6. Keputusan : terima Ho, tolak Ha
7. Kesimpulan :
Pendapat yang menyatakan bahwa hubungan biaya periklanan dengan tingkat penjualan lebih kecil (<) dari 0,4 adalah benar, dimana biaya mempengaruhi tingkat penjualan sebesar 57.76%
Lane DRay https://woof.tube/stream/YpHhME4ChW4
ANALISIS REGRESI LINEAR SEDERHANA
Analisis regresi linier sederhana adalah hubungan secara linear antara satu variabel independen (X) dengan variabel dependen (Y). Analisis ini untuk mengetahui arah hubungan antara variabel independen dengan variabel dependen apakah positif atau negatif dan untuk memprediksi nilai dari variabel dependen apabila nilai variabel independen mengalami kenaikan atau penurunan.. Data yang digunakan biasanya berskala interval atau rasio.
Rumus regresi linear sederhana sebagi berikut:
Y’ = a + bX
Keterangan:
Y’ = Variabel dependen (nilai yang diprediksikan)
X = Variabel independen
a = Konstanta (nilai Y’ apabila X = 0)
b = Koefisien regresi (nilai peningkatan ataupun penurunan)
Seorang mahasiswa bernama Hermawan ingin meneliti tentang pengaruh biaya promosi terhadap volume penjualan pada perusahaan jual beli motor. Dengan ini di dapat variabel dependen (Y) adalah volume penjualan dan variabel independen (X) adalah biaya promosi. Dengan ini Hermawan menganalisis dengan bantuan program SPSS dengan alat analisis regresi linear sederhana. Data-data yang di dapat ditabulasikan sebagai berikut:
Tabel. Tabulasi Data Penelitian (Data Fiktif)
No
|
Biaya Promosi
|
Volume Penjualan
|
1
|
12,000
|
56,000
|
2
|
13,500
|
62,430
|
3
|
12,750
|
60,850
|
4
|
12,600
|
61,300
|
5
|
14,850
|
65,825
|
6
|
15,200
|
66,354
|
7
|
15,750
|
65,260
|
8
|
16,800
|
68,798
|
9
|
18,450
|
70,470
|
10
|
17,900
|
65,200
|
11
|
18,250
|
68,000
|
12
|
16,480
|
64,200
|
13
|
17,500
|
65,300
|
14
|
19,560
|
69,562
|
15
|
19,000
|
68,750
|
16
|
20,450
|
70,256
|
17
|
22,650
|
72,351
|
18
|
21,400
|
70,287
|
19
|
22,900
|
73,564
|
20
|
23,500
|
75,642
|
Langkah-langkah pada program SPSS
Ø Masuk program SPSS
Ø Klik variable view pada SPSS data editor
Ø Pada kolom Name ketik y, kolom Name pada baris kedua ketik x.
Ø Pada kolom Label, untuk kolom pada baris pertama ketik Volume Penjualan, untuk kolom pada baris kedua ketik Biaya Promosi.
Ø Untuk kolom-kolom lainnya boleh dihiraukan (isian default)
Ø Buka data view pada SPSS data editor, maka didapat kolom variabel y dan x.
Ø Ketikkan data sesuai dengan variabelnya
Ø Klik Analyze - Regression - Linear
Ø Klik variabel Volume Penjualan dan masukkan ke kotak Dependent, kemudian klik variabel Biaya Promosi dan masukkan ke kotak Independent.
Ø Klik Statistics, klik Casewise diagnostics, klik All cases. Klik Continue
Ø Klik OK, maka hasil output yang didapat pada kolom Coefficients dan Casewise Diagnostics adalah sebagai berikut:
Tabel. Hasil Analisis Regresi Linear Sederhana
Persamaan regresinya sebagai berikut:
Y’ = a + bX
Y’ = -28764,7 + 0,691X
Angka-angka ini dapat diartikan sebagai berikut:
- Konstanta sebesar -28764,7; artinya jika biaya promosi (X) nilainya adalah 0, maka volume penjulan (Y’) nilainya negatif yaitu sebesar -28764,7.
- Koefisien regresi variabel harga (X) sebesar 0,691; artinya jika harga mengalami kenaikan Rp.1, maka volume penjualan (Y’) akan mengalami peningkatan sebesar Rp.0,691. Koefisien bernilai positif artinya terjadi hubungan positif antara harga dengan volume penjualan, semakin naik harga maka semakin meningkatkan volume penjualan.
Nilai volume penjualan yang diprediksi (Y’) dapat dilihat pada tabel Casewise Diagnostics (kolom Predicted Value). Sedangkan Residual (unstandardized residual) adalah selisih antara Volume Penjualan dengan Predicted Value, dan Std. Residual (standardized residual) adalah nilai residual yang telah terstandarisasi (nilai semakin mendekati 0 maka model regresi semakin baik dalam melakukan prediksi, sebaliknya semakin menjauhi 0 atau lebih dari 1 atau -1 maka semakin tidak baik model regresi dalam melakukan prediksi).
- Uji Koefisien Regresi Sederhana (Uji t)
Uji ini digunakan untuk mengetahui apakah variabel independen (X) berpengaruh secara signifikan terhadap variabel dependen (Y). Signifikan berarti pengaruh yang terjadi dapat berlaku untuk populasi (dapat digeneralisasikan).
Dari hasil analisis regresi di atas dapat diketahui nilai t hitung seperti pada tabel 2. Langkah-langkah pengujian sebagai berikut:
1. Menentukan Hipotesis
Ho : Ada pengaruh secara signifikan antara biaya promosi dengan volume penjualan
Ha : Tidak ada pengaruh secara signifikan antara biaya promosi dengan volume penjualan
2. Menentukan tingkat signifikansi
Tingkat signifikansi menggunakan a = 5% (signifikansi 5% atau 0,05 adalah ukuran standar yang sering digunakan dalam penelitian)
3. Menentukan t hitung
Berdasarkan tabel diperoleh t hitung sebesar 10,983
4. Menentukan t tabel
Tabel distribusi t dicari pada a = 5% : 2 = 2,5% (uji 2 sisi) dengan derajat kebebasan (df) n-k-1 atau 20-2-1 = 17 (n adalah jumlah kasus dan k adalah jumlah variabel independen). Dengan pengujian 2 sisi (signifikansi = 0,025) hasil diperoleh untuk t tabel sebesar 2,110 (Lihat pada lampiran) atau dapat dicari di Ms Excel dengan cara pada cell kosong ketik =tinv(0.05,17) lalu enter.
5. Kriteria Pengujian
Ho diterima jika –t tabel < t hitung < t tabel
Ho ditolak jika -thitung < -t tabel atau t hitung > t tabel
6. Membandingkan t hitung dengan t tabel
Nilai t hitung > t tabel (10,983 > 2,110) maka Ho ditolak.
7. Kesimpulan
Oleh karena nilai t hitung > t tabel (10,983 > 2,110) maka Ho ditolak, artinya bahwa ada pengaruh secara signifikan antara biaya promosi dengan volume penjualan. Jadi dalam kasus ini dapat disimpulkan bahwa biaya promosi berpengaruh terhadap volume penjualan pada perusahaan jual beli motor.
Rahardja Prathama SE.1995.Pelajaran Ekonomi Kls.III. Jakrta. Pt Intan Pariwara.
Syafril Drs.Dkk. 1999. IPS Ekonomi. Jakarta. Bumi Aksara.
http://andy-arizky.blogspot.com/2013/06/regresi-linier-sederhana.html
http://www.produksielektronik.com/2013/04/analisis-regresi-linear-sederhana-simple-linear-regression/
Loading...
No comments:
Post a Comment